
1.  Introduction
Coastal sea level exhibits significant spatial and temporal variations, reflecting the influence of tides, winds, 
coastal currents, varying salinity, and local bathymetry. Measuring, predicting, and understanding these 
variations in the often densely populated coastal regions are important for a number of economic and nat-
ural hazard reasons (Barnard et al., 2015; Hallegatte et al., 2013). Robust measurement of coastal sea level 
requires both high temporal resolution (e.g., coastal tide gauges and the system described here) and the 
high spatial resolution afforded by satellites. Pulse-limited satellite radar altimeters have been challenged 
in coastal areas mainly due to land contaminations. Improved retracking algorithms and new generation 
altimeters with delay-Doppler/Synthetic Aperture Radar (SAR) mode such as Cryosat-2, Sentinel-3, and 
Sentinel-6 promise significant advances (International Altimetry Team,  2021), though performance can 
still be problematic within 5  km of the coast (e.g., Peng & Deng,  2020). Satellite altimetry data require 
calibration, often performed by comparing to tide gauge observations. However, tide gauge distribution is 
uneven, may lack simultaneous vertical land motion measurements, and typically does not sample shallow 
offshore regions. These limitations can affect the calibration, hampering applications of satellite altimetry 
in coastal waters.

Global navigation satellite systems (GNSS), including the Global Positioning System (GPS), have been wide-
ly used in Earth science studies, such as crustal deformation (e.g., Dixon, 1991), atmospheric water vapor 
variation (e.g., Bevis et al., 1992), ionosphere perturbation (e.g., Ho et al., 1996), tide gauge calibration (Wat-
son et al., 2008), ice motion (Zhang et al., 2008), and volcanic plume detection (Larson, 2013). One of the er-
ror sources for precise positioning, multipath, can be used to measure the height and other characteristics of 
the reflecting surface using a technique called interferometric reflectometry (Karegar et al., 2020; Larson & 
Nievinski, 2013; Larson et al., 2013, 2017, 2021; Liu & Larson, 2018; Löfgren & Haas, 2014; Peng et al., 2019; 
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Purnell et al., 2020; Roesler & Larson, 2018; Wang et al., 2020). GNSS interferometric reflectometry (GNSS-
IR) exploits the periodic constructive and destructive interference between the direct and the reflected 
signals. The resulting oscillation in signal-to-noise ratio (SNR) can be used to estimate the height differ-
ence between the phase center of the GNSS antenna and the reflecting surface (Larson & Nievinski, 2013). 
Among different reflectors, water is a nearly specular reflector and is well suited to GNSS-IR applications. 
Previous studies demonstrated typical root-mean-square (RMS) differences between water levels measured 
by ground-based GNSS-IR and conventional tide gauges on the order of ∼10 cm for individual estimates and 
a few centimeters for daily means (e.g., Larson et al., 2017; Peng et al., 2019; Williams & Nievinski, 2017). 
When the antenna is in kinematic mode, that is, mounted on a moving platform, water level estimates by 
GNSS-IR become noisier due to the platform's complicated motion (e.g., Roggenbuck & Reinking, 2019).

Compared to conventional tide gauges (e.g., acoustic sounding tube, radar, or pressure sensors), the sam-
pling rate and corresponding precision for GNSS-IR is lower. However, this technique has several advantag-
es over conventional tide gauges. For example, GNSS-IR can measure absolute water level changes without 
relying on additional data such as vertical land motion, and the hardware needs little maintenance. Consid-
ering that there are many geodetic quality GNSS stations available, and for most of them the primary pur-
pose is precise positioning, GNSS-IR can provide useful sea level measurements with little additional cost.

While water level measurements with GNSS-IR have been demonstrated in a number of studies, previous 
applications are mainly in coastal areas with stationary GNSS sites (e.g., Larson et al., 2013, 2017, 2021; 
Peng et al., 2019). Roggenbuck and Reinking (2019) tested the method with three months of data collected 
by a ship-based GNSS antenna along a ferry route. The standard deviation of the differences between the 
estimated water levels and a nearby tide gauge measurements in that study was about 4–6 cm. Here, we use 
a GPS station installed on an anchored spar-buoy to measure offshore water levels at a fixed site in Tampa 
Bay, Florida (Figure 1). The system was designed for measuring three-component seafloor motion, with the 
GPS antenna placed on top of the spar, and the bottom of the spar connected to a heavy ballast by a shackle. 
A float is integrated into the spar to provide buoyancy, keeping the buoy near vertical (Xie et al., 2019). This 
design is much less expensive compared to construction and deployment of massive rigid spars, and can be 
redeployed when necessary. The downside is that the GPS antenna is constantly moving due to strong tidal 
currents and other environmental forcing. These motions are a potential noise source unless appropriate 
corrections are made. Height changes of the antenna above water reflect a combination of vertical motion 
of the anchor, spar tilt, and water level changes, although after several months of settling anchor vertical 
motion is minimal. The system can be deployed in shallow offshore waters, several kilometers or more from 
the coastline (Xie et al., 2019). Since only GPS data are used in this study, we refer to the method as GPS-IR 
unless noted.

2.  GPS Data
Dual-frequency (L1 and L2) GPS data obtained between August 23, 2018 and July 1, 2021 were used in this 
study. In different experimental stages, the data sampling intervals differ: 15 s   from August 23, 2018 to 
May 17, 2019, 5 s from May 18, 2019 to August 25, 2019, and 30 s from August 26, 2019 to July 1, 2021. A 
17-day data gap occurred between September 16 and October 3, 2020, and the receiver resumed operation 
after that. However, many short gaps were found in data obtained after October 3, 2020 due to a loose wire 
contact. A satellite elevation angle mask of 7° was set in the receiver. SNR data collected when the satellite 
elevation angle was between 7° and 13° were used in the GPS-IR analysis. Figure 1b shows an example of 
GPS-signal multipath reflection points. Figure 1c shows an example of the sensing zones on water (First 
Fresnel Zones, see details in Larson & Nievinski, 2013) for satellites at 7° and 13° elevation angles. The gap 
in the north direction is due to orbit limitations in the satellite constellation. Compared to many coastal 
GNSS sites where some of the sensing zones are not on water or are obstructed, in our case data collected 
from all directions can be used.

Some previous GNSS-IR studies used SNR data collected at lower satellite elevation angles (e.g., Larson 
et al., 2013; Peng et al., 2019; Roggenbuck & Reinking, 2019). In our case, the GPS spar-buoy system was 
not originally designed for GPS-IR measurements, hence a 7° elevation angle mask was used to reduce 
multipath noise in precise positioning and limit data rate. A maximum elevation angle of 13° was chosen 
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because the effects of multipath modulation on SNR data become less obvious at higher elevation angles. 
Nevertheless, a satellite track from 7° to 13° provides enough data for high-quality reflecting height es-
timates (see below). Figure  2a shows a typical one-day example of satellite tracks used for our GPS-IR 
measurements.

3.  Data Analysis
Water levels are calculated by H = Hg − Hr, where H, Hg, and Hr denote water level, elevation of the GPS 
antenna phase center, and reflecting height (vertical distance between GPS antenna phase center and the 
water surface), respectively. Kinematic GPS processing to estimate Hg was reported in Xie et al. (2019); we 
follow the same method here: GPS positions are determined using Precise Point Positioning method provid-
ed by the Canadian Spatial Reference System (CSRS, https://webapp.geod.nrcan.gc.ca/geod/tools-outils/
ppp.php?locale, last access on September 5, 2021). Typical formal error of Hg for a single epoch is 3–5 cm. 
Gray dots in Figure 3a shows the time series of Hg. An exponential subsidence signal is evident, mainly due 
to anchor settling and tidal current scouring. The total vertical displacement of the buoy is about −0.9 m 
during the study period.

To estimate the reflecting height Hr, the method described in Larson et al. (2013) was used, with several 
changes to account for the motion of the GPS antenna and local water level variation, described in the 
following steps:

1.  Data selection: L1 or L2 data obtained during GPS satellite ascending or descending tracks (7°–13° eleva-
tion angle) were analyzed separately. The average satellite transit time of each track is 22 min.

Figure 1.  Study area and Global Positioning System (GPS) spar-buoy system. (a) Location of the study area, distance between the buoy and a conventional tide 
gauge (orange hexagon) is 19.5 km. (b) GPS-signal multipath reflection points on June 6, 2019 when satellite elevation angles are between 7° and 30°, colors 
correspond to different GPS satellites labeled by pseudorandom noise (PRN) codes in (c). (c) Sensing zones (first Fresnel zones) for satellites at 7° (thick line 
ellipses) and 13° (thin line ellipses) elevation angles on June 6, 2019. (d) The above-waterline portion of the GPS spar-buoy system.

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale
https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale
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2.  Data detrending: A third-order polynomial was used to detrend the SNR versus sin E data, where E 
represents the GPS satellite elevation angle. This removes long-period variations due to changes in the 
receiver-satellite distance and the gain pattern of the antenna, leaving the multipath effect (red line in 
Figure 2b).

3.  Preliminary reflecting height estimate: The dominant frequency of the detrended SNR versus sin E 
data was picked by a Lomb-Scargle periodogram (LSP) analysis, which can be converted to preliminary 
reflecting height using Hr = λ*fmax/2, where λ is the wavelength of the GPS signal (19.05 cm for L1, 
24.45 cm for L2) and fmax is the dominant frequency picked by the LSP analysis (marked by a dashed line 
in Figure 2c). For each LSP analysis, a peak-to-noise ratio is calculated as a criterion for quality control.

4.  Nonstationary reflecting height correction: Due to tidal variation and buoy deflection, the vertical dis-
tance between the antenna and water surface is not constant, biasing the preliminary reflecting height 
estimate by  tan /rE H E E (Larson et al., 2013). Two methods were used for the nonstationary reflecting 
height correction. First, by estimating tidal constituents and using that to derive reflecting height rate. 
Second, by fitting an eighth-order polynomial for each 3-day time series of Hr and using the derivations 
of the middle day for corrections. We found that for data with the same minimum LSP peak-to-noise ra-
tio, final water level estimates using the second correction method have smaller discrepancies compared 
to a nearby tide gauge (Figure 4b). Larson et al. (2013) noted that the first correction method assumed 
no contribution to 

rE H  from influences other than astronomical tides. In our case, the frequently deflected 
spar (mainly due to wind and ocean current) changed the reflecting height, and there is also frequent 
meteorological forcing (hurricanes and storms) on local water levels. Hence, we used the second cor-
rection method for further analyses. We note that a lower order polynomial is often too smooth, while a 
higher order polynomial can introduce spurious corrections during extreme weather events.

Figure 2.  An example of Global Positioning System (GPS) interferometric reflectometry to retrieve water level. (a) 
GPS satellites observed by the receiver at elevation angles between 7° and 13° on June 6, 2019. (b) Signal-to-noise ratio 
(SNR) data for the descending track of satellite with pseudorandom noise (PRN) code 32 (marked by the thick red 
line in a). Red line shows the detrended SNR data, black line shows the least squares fitting of a sine function for the 
dominant signal. (c) Lomb-Scargle periodogram (LSP) of the detrended SNR data, frequencies are converted to GPS 
heights above the reflecting surface.
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Several criteria were used for quality control. First, an iterative method was applied to ensure that only 
satellite tracks with observation numbers above the Nyquist sampling limit are used. For example, a pre-
liminary analysis shows that the reflecting heights are between 7 and 11 m during the entire study period, 
hence a theoretical maximum height of 11.5 m (in a conservative sense) was used to calculate the equivalent 
frequency and required minimum number of observations to recover the dominant frequency in the subse-
quent LSP analysis. Second, to ensure the LSP result is robust, the theoretical number of cycles in the SNR 
versus sin E must be larger than 3. For example, the satellite track shown in Figure 2b has ∼10 cycles. Third, 
to determine if the dominant frequency signal estimated by the LSP analysis is significant, a peak-to-noise 

Figure 3.  Global Positioning System (GPS) spar-buoy and tide gauge observed water levels. (a) Gray dots show GPS 
antenna vertical displacements. Black dots show GPS-IR estimated reflecting heights. Red dots show the GPS spar-buoy 
derived water levels. Blue line shows tide gauge observed water levels (tide gauge location is shown in Figure 1a). Cyan 
lines show 0.2 cycle-per-day low-frequency-pass filtered water levels. Note except for the black dots, all other markers 
are offset for clarity. Orange shade marks a one-month period with water levels shown in Figure 5. (b) Standard 
deviations of GPS vertical displacements over 22-min incremental periods. (c) Daily standard deviations of the 
differences between de-tided water levels measured by GPS-IR and the tide gauge. (d) Number of water level retrievals 
per day by GPS-IR, gold, orange, and yellow colors mark periods with different data intervals. (e) Mean wind speed over 
every 30-min period measured by a wind sensor onboard the spar-buoy. Note the linear correlation between number of 
water level retrievals per day and daily mean wind speed is −0.70.
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ratio was used as a measure of the data quality for LSP analysis. The background noise band was chosen 
to be between 6.5 and 11.5 m. This is certainly not the only or the best method to evaluate the significance 
of a peak in LSP analyzed frequencies (Roesler & Larson, 2018). However, it works well for detecting low 
quality reflecting height estimates: in general, increased peak-to-noise thresholds correspond to reduced 
discrepancies between the GPS-IR results and the nearby tide gauge data (Figure 4b). We also found that 
the average number of water level retrievals per day decreases with increased peak-to-noise threshold (Fig-
ure 4a). When the peak-to-noise threshold was set too high, only a small number of water level estimates 
were kept and many weather events were not represented well in the retrieved water levels. Considering the 
trade-off between precision and data availability, a minimum peak-to-noise ratio of 2.2 was chosen for the 
following analyses (marked by cyan line in Figures 4a and 4b).

GPS microwave signals are subject to tropospheric delays and previous work suggests this could perceptibly 
affect GPS-IR measurements (Williams & Nievinski, 2017). We adopted the correction method of Williams 
and Nievinski  (2017), using the discrete products of the Vienna Mapping Functions 3 (VMF3) and the 
Global Pressure and Temperature 3 (GPT3) model (Landskron & Böhm, 2018) to calculate the tropospheric 
delays. While the absolute biases due to tropospheric delays in our GPS-IR reflecting height estimates have a 

Figure 4.  Minimum peak-to-noise ratio of Lomb-Scargle periodogram (LSP) analysis for quality control. (a) Average 
number of successful reflecting height estimates per day with different peak-to-noise thresholds. (b) Standard deviation 
of the differences between de-tided water levels at the spar-buoy and the tide gauge. Blue and red dotted lines show 
results when an eighth-order polynomial was used for reflecting height rate correction (preferred), pink and light blue 
show results when tidal constituents and reflecting height rate were estimated simultaneously. (c) Differences between 
de-tided water level measurements at the spar-buoy and the tide gauge. Gold, orange, and yellow colors mark periods 
with 15, 5, and 30 s data intervals collected by the GPS.
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mean of 11.3 cm, the fluctuation is small, with a standard deviation of 1.2 cm, primarily due to the relatively 
small tidal range at the study area (∼1 m).

Water levels were calculated by subtracting the GPS-IR-measured reflecting heights from GPS-measured 
antenna phase center elevations. Since both GPS L1 and L2 signals were used, we combined them to form 
the final water level product. For each satellite track, if both L1 and L2 data retrieve a water level success-
fully, the weighted mean value was used to define the water level product. Since no ground-truth water 
levels are available to calculate the weights of L1 and L2 data, and a ∼1.5-hr time lag in the major tidal con-
stituents between the buoy and the closest tide gauge prevents direct comparison between GPS-IR results 
and tide gauge measurements (see below), we weighted L1 and L2 data based on the standard deviations of 
de-tided water level differences between the GPS-IR and tide gauge data: 15.1 cm for L1 and 13.5 cm for L2 
(blue and red dots in Figure 4c). Löfgren and Haas (2014) found that L1 performed better than L2 in GPS-IR 
water level measurements using SNR data. In our case, under the same quality control criterion, fewer suc-
cessful water level retrievals were obtained from L2 compared to L1 data. However, L2 retrievals that passed 
quality control have a slightly better agreement with the nearby tide gauge data compared to L1 retrievals.

4.  Discussion
During the study period, an average of 54 water levels per day were retrieved by GPS-IR measurements. 
While the precision of a single water level estimate by the GPS spar-buoy is much worse than a typical con-
ventional tide gauge (Míguez et al., 2012), it does provide an independent method for sea level monitoring. 
Below, we discuss quality and potential applications of the water level product derived from the GPS data.

4.1.  Factors Affecting the Precision of Water Levels Measured by the GPS Spar-Buoy

Water levels (Red dots in Figure 3a) were calculated by subtracting the GPS-measured reflecting heights 
(black dots in Figure 3a) from GPS measured antenna phase center elevations (gray dots in Figure 3a). Since 
the reflecting height estimates are based on LSP analyses of data obtained at different satellite elevation 
angles, they should be treated as local averages over the corresponding periods (22 min on average). Several 
factors affect the precision of our water level product, discussed below:

1.  Vertical motion of the GPS antenna. Unlike stationary sites on land, the GPS antenna on top of the spar-
buoy is constantly moving due to wind and tidal currents. Our previous study shows that on days with 
moderate sea state, the buoy moves smoothly within a short period (e.g., close to the time length of indi-
vidual satellite arc for GPS-IR in this study; Figures 5 and 7a in Xie et al., 2019). Hence the nonstationary 
reflecting height correction works well to address the combined effect of GPS antenna motion and water 
level change over the satellite tracking period. In contrast, during extreme weather events, tilt and bob-
bing of the buoy reduces the periodicity of the SNR versus sin E relation, worsening the precision of the 
dominant frequency identified by LSP analysis. However, because GPS-IR uses the periodic pattern of 
the detrended data over tracked satellite arcs for reflecting height estimates, the retrieved water levels are 
inherently local averages, making it difficult to correct data for individual epochs. Figure 3b shows the 
standard deviations (Std) of GPS heights over 22-min increments (average satellite arc period). Regard-
less of the water level changes, if GPS vertical motion varies significantly during the satellite tracking 
arc periods (e.g., Std > 10 cm), local averages of estimated water levels (calculated by H = Hg − Hr) will 
have larger uncertainties due to increased uncertainties in (Hg). Reducing the spar-buoy cross section 
or increasing the net buoyancy are possible methods to reduce the influence of buoy tilt and bobbing on 
GPS-IR water level measurements.

2.  Sea state. During the study period, a number of extreme weather events occurred at the spar-buoy site 
(Xie et al., 2019). Sea state not only affects the GPS antenna motion, but also directly influences the 
roughness of the reflecting surface. Previous applications of storm surge detections show that high winds 
downgrade the performance of GNSS-IR for height estimation (Larson et al., 2021; Peng et al., 2019). 
In our case, during extreme weather events (e.g., hurricanes) fewer satellite tracks fulfilled the quality 
control and the uncertainty in the sea level estimate is larger compared to days with calm sea state. For 
example, number of water level retrievals per day (Figure 3d) and daily mean wind speed have a linear 
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correlation of −0.70, suggesting downgraded performance of GPS-IR during elevated sea states. On the 
other hand, this suggests the system could be used to measure sea state.

3.  GPS data interval. While a Nyquist sampling limit was used for quality control, this criterion only en-
sures there is just enough observations to estimate a theoretical dominant frequency in LSP analysis. 
Denser observations allow more precise reflecting height estimates due to increased constraints. Fig-
ure 5 compares water levels retrievals with 5, 15, and 30 s interval data in June 2019 (15 and 30 s data 
were down-sampled from the 5  s data). Higher rate data lead to higher precision in estimated water 
levels. More importantly, Figures 3d and 5 suggest that higher rate GPS data produce larger numbers 
of successful reflecting height estimates per day. Therefore, when data storage and transmission allow, 
higher rate data are preferred.

4.2.  Comparison to Conventional Tide Gauge Data

Compared to a conventional coastal tide gauge located 19.5 km away (Figure 1a), precision of water levels 
measured by the GPS spar-buoy is lower. However, our technique captures both low (cyan lines in Fig-
ure 3a) and high (Figure 5) frequency signals well. Figures 6a–6c shows tidal harmonic analyses of water 
level time series obtained from the two techniques. For the 10 largest tidal constituents, the largest ampli-
tude difference is 1.5 cm. Comparing amplitudes, the differences at the two locations are all smaller than 
11% of their amplitudes except for the tidal constituent S1, which has a period of 24 hr that is also the daily 

Figure 5.  Global Positioning System (GPS) spar-buoy and tide gauge observed water levels (a–c) and the differences 
(d) for June 2019 (marked by orange shade in Figure 3a). In a-c, blue lines show tide gauge records, red dots show 
estimates by GPS. 15- and 30-s interval SNR data were down-sampled from 5-s data. All three analyses followed the 
same quality control. The average number of successful water level retrievals per day are 81, 78, and 71 for 5, 15, and 
30-s interval data during the selected month.
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environmental variation cycle. Comparing phases, analyzed tidal constituents at the tide gauge all lag be-
hind the spar-buoy site (Figure 6a). Except for the solar annual and semi-annual terms that have very long 
periods (8766.2 and 4383.1 hr), the other eight largest tidal constituents have a mean time lag of 1.5 ± 0.3 hr.

Apart from measurement error in the two techniques, the amplitude and phase differences likely reflect 
true tidal differences at the two locations given the 19.5 km separation. Figure 7 compares the phases and 
amplitudes of the three largest tidal constituents (M2, K1, O1) derived from the tide gauge measurements, 
the GPS-IR measurements, and a widely used ocean tide model OSU TPXO (Egbert & Erofeeva, 2002). The 

Figure 6.  Tidal analyses and predictions. (a) The 10 largest tidal constituents from harmonic analyses of the tide 
gauge (dotted line) and Global Positioning System (GPS) spar-buoy (solid line) observations, plotted in polar projection. 
Each color corresponds to a tidal constituent shown in b and c with the same color. (b) Amplitude differences of 
tidal constituents between the tide gauge and GPS spar-buoy derived results, bottom to top corresponds the largest to 
smallest tidal constituent (M2 to S1), the right annotations are percentages of the amplitude difference (average of the 
amplitudes from the two techniques). (c) Phase differences of tidal constituents between the tide gauge and GPS spar-
buoy derived results. The corresponding time lags are annotated on the right. (d and e) Water level predictions. Blue 
line shows tide gauge observed water levels for comparison. (f) Difference in sea level predictions based on observations 
and model. TG, tide gauge, OSU, OSU TPXO model (Egbert & Erofeeva, 2002). Gray line reflects sea level difference at 
the tide gauge and buoy locations due to time lag, with a standard deviation of 12.0 cm.
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ocean tide model shows similar level of amplitude or phase differences at these two locations, though the 
GPS spar-buoy and tide gauge-derived amplitudes are systematically smaller than the ocean tide model 
(Figure 7). Weisberg and Zheng (2006) used in situ data and a finite volume coastal ocean model to study 
Tampa Bay water circulation. They analyzed the principal semi-diurnal, M2, and diurnal, K1, tidal constit-
uents derived from tide gauge data and model simulations (annotated in Figure 7 by cyan text); all match 
well with our analysis.

To assess the ability of the GPS spar-buoy to monitor sea level change, we subtracted the water level variabil-
ity due to constituent tides (de-tiding). Figure 8 shows the daily means of de-tided water levels measured by 
the GPS spar-buoy and two nearby tide gauges. GPS spar-buoy measured sea levels correlate well with tide 

Figure 7.  Comparison of phase (top) and amplitude (bottom) of the three largest tidal constituents at the spar-buoy and the tide gauge locations. Color 
maps show OSU TPXO regional tidal solutions for the Gulf of Mexico. Phase (°) or amplitude (cm) at the spar-buoy or tide gauge location is annotated above 
corresponding triangle marker, with OSU TPXO modeled value first and then result derived from the GPS spar-buoy or tide gauge observations (in parentheses). 
For M2 and K1 tidal constituents, text in brown color (under markers) show observed and simulated results from Weisberg and Zheng (2006), with simulated 
results in parentheses.
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gauge measurements, with RMS of the differences at 4.4 and 3.7 cm compared to two nearby tide gauges at 
19.5 and 21.8 km distances.

4.3.  Contribution to Coastal Ocean Modeling

Tampa Bay is the largest of the Florida coastal plain estuaries. With spatial resolution as fine as 20  m, 
the Tampa Bay Coastal Ocean Model (TBCOM) resolves the channels, inlets, bridge causeways, and other 
geometric complexities (Chen et al., 2018). To maintain high resolution within the estuary and properly 
account for exchanges between the continental shelf and estuary, TBCOM downscales from the continen-
tal shelf to the estuary by nesting the unstructured grid of the Finite Volume Community Ocean Model 
(FVCOM) (Chen et al., 2003) in the West Florida Coastal Ocean Model (WFCOM) (Weisberg et al., 2014; 
Zheng & Weisberg,  2012), which in turn downscales from the deep ocean across the continental shelf 
by nesting FVCOM in the Gulf of Mexico Hybrid Coordinate Ocean Model (HYCOM) (e.g., Chassignet 
et al., 2009).

Sea levels observed by tide gauges are important data to validate ocean circulation models. Previously, TB-
COM used sea level data obtained at several coastal tide gauges and velocity profiles from a station within 
the main shipping channel to evaluate the model simulations (Chen et al., 2018, 2019). The veracity of 
TBCOM was demonstrated by simulating the Tampa Bay circulation as driven by tides, winds and rivers, 
and reproducing the sea level and circulation under both normal weather conditions (Chen et al., 2019; 
Zhu et al., 2015) and extreme events such as Hurricane Irma (Chen et al., 2018). Similar misfits of sea levels 
between lowpass filtered observations and model simulations were found at the tide gauge and GPS spar-
buoy locations (Figure 9c). These errors originate both from the open boundary sea levels that propagate 
to the coastal and estuary areas and errors in the local winds used to force the model (e.g., He et al., 2004; 
Mayer et al., 2017). Because the misfit at our GPS spar-buoy station is at a similar level compared to the 
conventional tide gauges, data obtained by the GPS spar-buoy can be used to adjust the model simulations 
with similar accuracy compared to a conventional tide gauge. Table 1 lists the correlation coefficients (CCs) 

Figure 8.  Comparison of de-tided daily mean sea levels measured by the Global Positioning System (GPS) spar-buoy 
and tide gauges at Port Manatee and St Petersburg (locations shown in Figure 9a).
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and root mean square errors (RMSEs) between observed and TBCOM simulated sea levels at five different 
locations. By adjusting the simulated sea levels using the GPS spar-buoy-measured sea levels, the root mean 
square errors (RMSEs) between the observations and model simulations at all tide gauges were reduced by 
19%–25%, and the correlation coefficients were increased by 4%–10%. These improvements are similar to 

Figure 9.  Sea levels modeled by the Tampa Bay Coastal Ocean Model (TBCOM). (a) Black mesh shows the model 
domain, red markers mark the Global Positioning System (GPS) spar-buoy and tide gauge locations. (b) 3.5-day example 
of observed and hourly modeled sea levels at the GPS spar-buoy and the Port Manatee tide gauge. (c) Differences 
between the low pass filtered observed and model simulated sea levels at the GPS spar-buoy and tide gauges before the 
adjustment. Details of the TBCOM modeling scheme are described in Chen (2021) and Chen et al. (2018, 2019).

Location

Before adjustment Adjusted by Port Manatee Adjusted by GPS spar-buoy

CC RMSE (cm) CC RMSE (cm) CC RMSE (cm)

Clearwater 0.90 12.5 0.94 9.3 0.94 9.9

Mckay Bay 0.86 14.5 0.93 10.8 0.92 11.7

St Petersburg 0.86 13.0 0.94 9.1 0.93 9.9

Port Manatee 0.86 12.2 0.94 8.5 0.93 9.3

GPS spar-buoy 0.84 12.5 0.92 9.1 0.92 9.4

Note. Model domain, Global Positioning System (GPS) spar-buoy and tide gauge locations are shown in Figure 9a.

Table 1 
Correlation Coefficient (CC) and Root Mean Square Error (RMSE) Between Observations and Tampa Bay Coastal 
Ocean Model (TBCOM) Simulations Before and After Adjustment by Water Levels Measured With a Tide Gauge at Port 
Manatee and the Global Positioning System (GPS) Spar-Buoy



Journal of Geophysical Research: Oceans

XIE ET AL.

10.1029/2021JC017734

13 of 14

model adjustment using observations obtained by a tide gauge at Port Manatee (Table 1), implying that the 
GPS spar-buoy can be an alternative to conventional tide gauges for validation of the TBCOM.

For the diurnal to semi-diurnal tidal constituents, our TBCOM simulations clearly reveal a time lag of sea 
level variations at the GPS spar-buoy and the nearby tide gauge at Port Manatee (Figure 9b), consistent with 
the tidal harmonic analysis (Figure 6).

Under the current climate change scenario, Tampa Bay and many other densely populated coastal regions 
are becoming increasingly vulnerable to sea level rise and storm surge (Dixon, 2017; Vitousek et al., 2017). 
Better monitoring and modeling of coastal ocean waters provide valuable reference to policy makers and 
stakeholders for a city's flood risk and resilience assessment. Our GPS spar-buoy system can serve multiple 
purposes, is much cheaper to construct and deploy than rigid buoys, needs little maintenance, and can 
improve coastal ocean models.

5.  Conclusions
An anchored GPS spar-buoy system, originally designed for measuring three-component seafloor motion 
in shallow water, is used to measure offshore sea levels in Tampa Bay by a combination of precise posi-
tioning and GPS interferometric reflectometry. Compared to a stationary GPS site on land, this system has 
broader sensing zones of the reflecting surface. For individual water level retrievals, agreement between the 
GPS spar-buoy and a nearby acoustic tide gauge is at ∼15 cm level. Harmonic analyses of the water levels 
measured by the GPS spar-buoy and the nearby tide gauge suggest that the amplitude differences of major 
tidal constituents at the two locations are no more than 1.5 cm, while the largest short period tidal height 
variations (diurnal and semi-diurnal) at the tide gauge lag behind the spar-buoy site by ∼1.5 hr. During a 
2.9-year period, RMS of the de-tided daily mean sea level differences measured by the GPS spar-buoy and 
the closest tide gauge is 4.4 cm. Numerical modeling of ocean circulation throughout Tampa Bay suggests 
that including offshore sea levels measured by the GPS spar-buoy helps the model correct low-frequency 
sea level error propagated from the open boundary. The capabilities of measuring both seafloor motion and 
sea level change make the anchored GPS spar-buoy a comprehensive monitoring system for coastal waters.

Data Availability Statement
Water levels measured by the tide gauges at Port Manatee and St Petersbury (NOAA station IDs: 8726384 
and 8726520) were downloaded from NOAA Tides and Currents (https://tidesandcurrents.noaa.gov/water-
levels.html?id=8726384 and https://tidesandcurrents.noaa.gov/waterlevels.html?id=8726520, last access 
on 5 September 2021). GPS data are archived at UNAVCO (https://doi.org/10.7283/TM3V-P845).
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